

PALESTRA CALIDAD DE AGUA

Paulo Sérgio Ceccarelli - CEPTA

WWW.PECESVIDA.ORG

Ejecutado por:

Con el apoyo de:

QUALIDADE DE AGUA

DADOS HIDROLÓGICOS

- -TEMPERATURA
- -OXIGÊNIO DISSOVILDO
- -PH
- -ALCALINIDADE
- -DUREZA
- -AMÔNIA

Temperatura - Direta e indiretamente influi sobre os organismos vivos, interagem com todas as demais propriedades da água.

Fatores que afetam a temperatura:

- Em tanques ou viveiros de terra
 - Radiação solar; Vento; Partículas em suspensão
- Em unidades experimentais
 - Circulação da água; Tipo, volume, localização das unidades (aquários); Ventilação das instalações; Tipo de iluminação natural e/ou artificial.

Efeitos da temperatura na água:

Temperatura (°C)	Solubilidade do oxigênio (p.p.m)		
10	11,10		
20	9,00		
28	7,76		

- Em tanques ou viveiros de terra
 - Estratificação; Solubilidade do O2D; Toxidez de compostos químicos.
- Em unidades experimentais
 - Solubilidade do OD; Toxidez de compostos químicos.

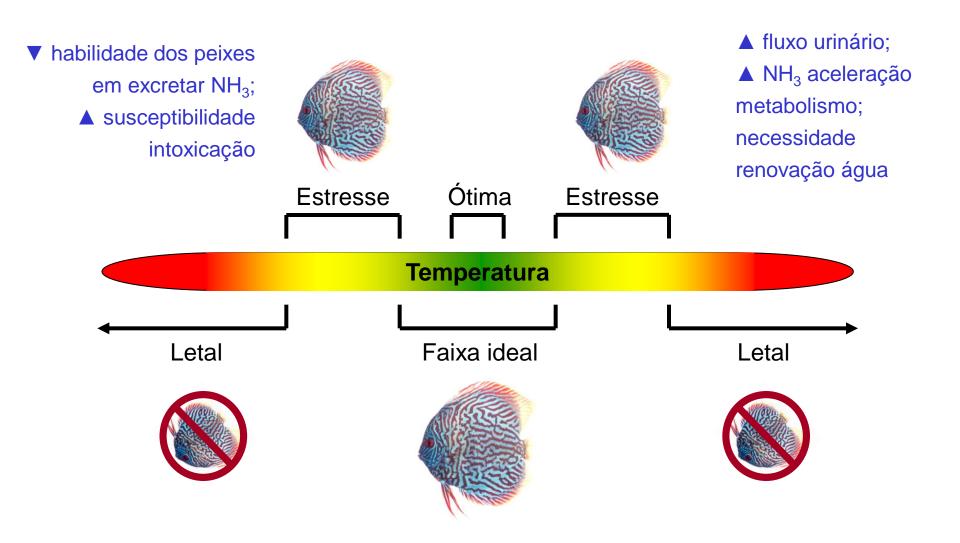
Efeito da temperatura no metabolismo dos organismos aquáticos

Excreção nitrogenada

- ► Alto teor protéico e desbalanço aminoacídico das rações ▲ excreção NH₃
- Principais resíduo nitrogenado produzidos pelos peixes: amônia e uréia
- ► Resíduos orgânicos sofrem degradação por bactérias, fungos e outros organismos
- No período pós-prandial, ▲ consumo OD com liberação de CO₂, NH₃ e nutrientes (uréia, aminoácidos, derivados óxido-aminos, creatina, creatinina e ácido úrico)

Toxidez e sinergismo a fatores físico-químicos

O efeito sinérgico da amônia a uma série de variáveis ambientais como pH, CO₂, OD, alcalinidade, temperatura, salinidade e processos de aclimatação, afetam sua toxidez.


pН

- para pH acima de 8
- a fração NH₃ aumenta em relação a fração NH₄+
- podendo alcançar concentrações tóxicas aos peixes

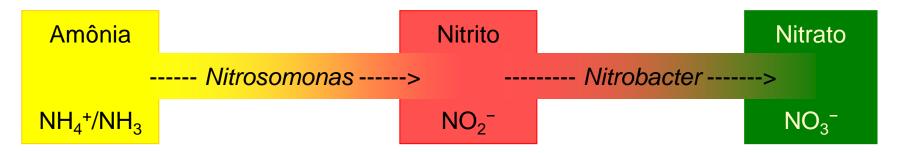
Efeito da amônia, nos peixes, em função do pH da água

Temperatura - efeitos sobre o metabolismo da amônia nos peixes

Gás Carbônico – efeito sobre a toxidez da amônia

- o aumento da concentração de CO₂ livre reduz a toxidez da amônia total
- a acidificação da água força o equilíbrio para amônia ionizada, NH₄+

Como resolver esse tipo de problema?


火

▲ poder tampão da água

Nitrito

Forma ionizada do ácido nitroso (HNO₂): $HNO_2 \longleftrightarrow H^+ + NO_2^-$

Composto intermediário do processo de nitrificação (aeróbio)

Efeito mais importante em peixes refere-se a capacidade deste composto em reagir com a hemoglobina convertendo-a em *meta*-hemoglobina (incapaz de transportar O₂), levando à morte por asfixia.

Sintoma característico é a cor **marrom do sangue**, indicando a oxidação do pigmento respiratório, o que ocorre em concentrações acima de 7-8mg L⁻¹.

Nitrato

Composto potencialmente tóxico em sistemas de recirculação de água

- toxidez, deve-se ao efeito sobre a osmorregulação
- possivelmente sobre o transporte de O₂

Os problemas com toxidez para peixes aparecem sob concentrações entre 1.000 e 3.000 mg de NO₃-.L⁻¹

- também possui a capacidade de oxidar a hemoglobina
- p.ex. > 6 mg.L⁻¹ provoca ▲ significativo no conteúdo plasmático de *ferri*-hemoglobina em trutas

3	H Temp °C	Concentração de Amônia Total em ppm.					
(pH		0,25	0,50	1,00	2,00	3,50	6,50
6,6 6	22	0,001	0,001	0,002	0,004	0,006	0,012
	25	0,001	0,001	0,002	0,005	0,008	0,014
	28	0,001	0,001	0,003	0,006	0,011	0,020
	22	0,001	0,001	0,003	0,006	0,011	0,020
6,8	25	0,001	0,002	0,004	0,007	0,013	0,023
	28	0,001	0,002	0,005	0,009	0,016	0,029
ó x	22	0,001	0,002	0,005	0,009	0,016	0,029
	25	0,001	0,003	0,006	0,011	0,020	0,037
i c	28	0,002	0,003	0,007	0,014	0,025	0,044
a	22	0,002	0,004	0,007	0,014	0,025	0,047
7,2	25	0,002	0,004	0,009	0,018	0,032	0,059
	28	0,003	0,006	0,011	0,022	0,039	0,073
7,4	22	0,003	0,006	0,011	0,023	0,040	0,074
	25	0,004	0,007	0,014	0,028	0,049	0,092
	28	0,004	0,009	0,017	0,034	0,060	0,112
7,6	22	0,004	0,009	0,018	0,036	0,062	0,116
	25	0,006	0,011	0,022	0,045	0,078	0,092
	28	0,007	0,014	0,027	0,054	0,095	0,176
7,9	22	0,009	0,018	0,036	0,072	0,127	0,234
	25	0,011	0,022	0,044	0,090	0,156	0,289
	28	0,014	0,028	0,055	0,109	0,191	0,353
8,1	22	0,014	0,028	0,056	0,111	0,194	0,362
	25	0,017	0,034	0,068	0,136	0,238	0,441
	28	0,021	0,042	0,083	0,166	0,289	0,538
8,3	22	0,022	0,043	0,085	0,170	0,298	0,552
	25	0,026	0,052	0,104	0,208	0,363	0,674
	28	0,032	0,063	0,126	0,252	0,440	0,817
8,5	22	0,032	0,064	0,128	0,256	0,448	0,830
	25	0,039	0,077	0,155	0,309	0,540	1,005
	28	0,047	0,092	0,185	0,370	0,647	1,201

BIBLIOGRAFIA CONSULTADA

BOYD (1990) Quality of water in ponds of aquaculture

ESTEVES (1998) Fundamentos de limnologia

KUBITZA (1999) Qualidade de água

BALDISSEROTO (2000) Fisiologia de peixes aplicada a piscicultura

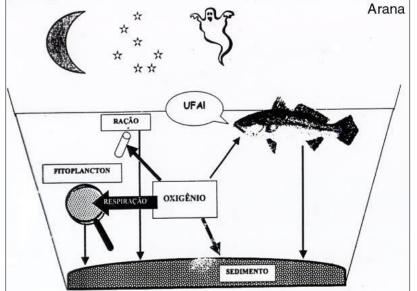
ARANA (2002) Princípios da qualidade de água

ESQUEMA PARA AVALIAR AS LEITURAS DO DISCO DE SECCHI

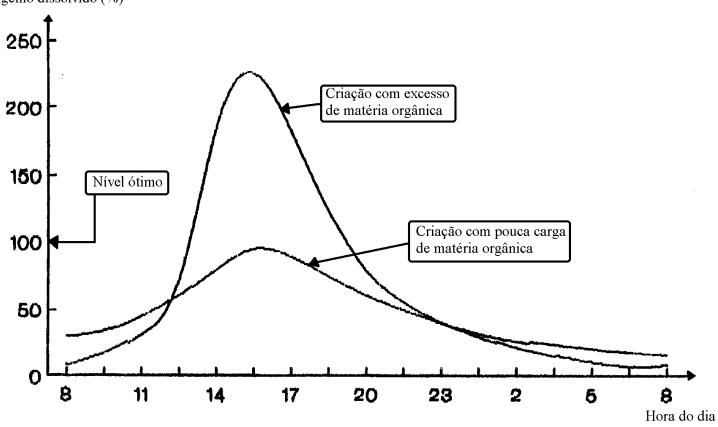
Leitura do disco de Secchi (cm)	Comentários
Menor que 20 cm	Viveiro muito turvo. Se o viveiro está turvo devido ao fitoplâncton, haverá problemas com baixa concentração de oxigênio dissolvido. Quando a turbidez for por partículas de solo em suspensão a produtividade será baixa.
20 – 30 cm	A turbidez está se tornando excessiva.
30 – 45 cm	Se a turbidez for devida ao fitoplâncton, o viveiro está em boas condições.
45 – 60 cm	O fitoplâncton está se tornando escasso
Mais que 60 cm	Água está muito clara. Produtividade inadequada e perigo de problemas com plantas daninhas aquáticas.

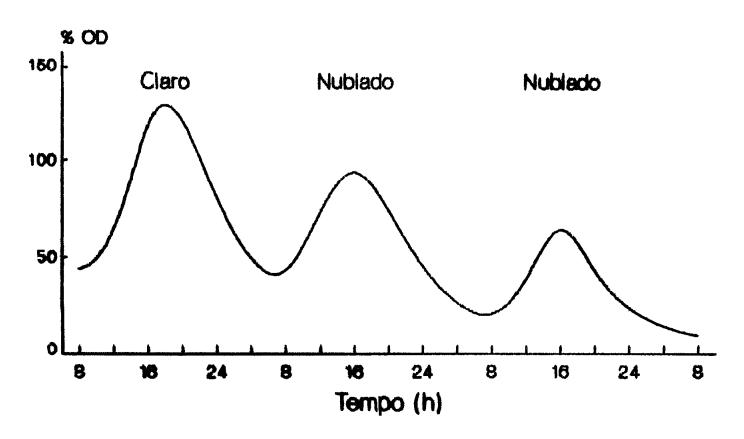
ICMBio

SANIDADE X QUALIDADE DA ÁGUA


Principais Enfermidades que acometem peixes no Brasil e no mundo: Origem

DADOS HIDROLÓGICOS


- TEMPERATURA
- OXIGÊNIO DISSOVILDO
- ∌ pH
- ALCALINIDADE
- DUREZA
- AMÔNIA



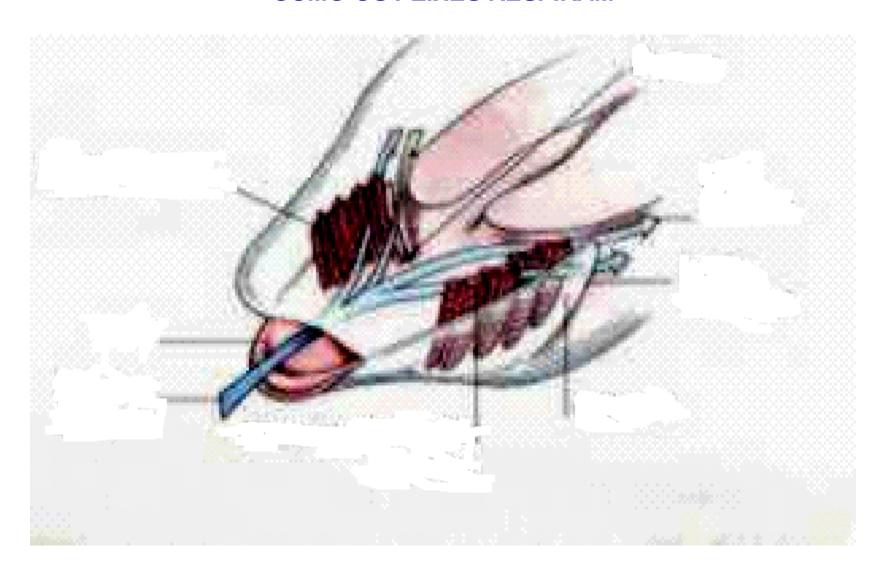
OXIGÊNIO DISSOLVIDO EM FUNÇÃO DA MATÉRIA ORGÂNICA

Nível de saturação do oxigênio dissolvido (%)

OXIGÊNIO DISSOLVIDO, EM PERÍODO DE UM DIA CLARO SEGUIDO DE DOIS DIAS NUBLADOS

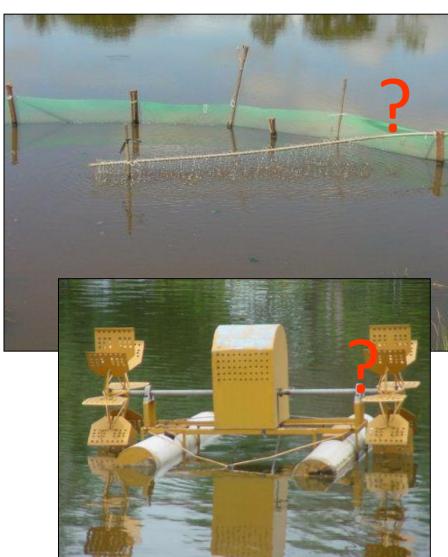
QUALIDADE DA ÁGUA

DENSIDADE DE ESTOCAGEM

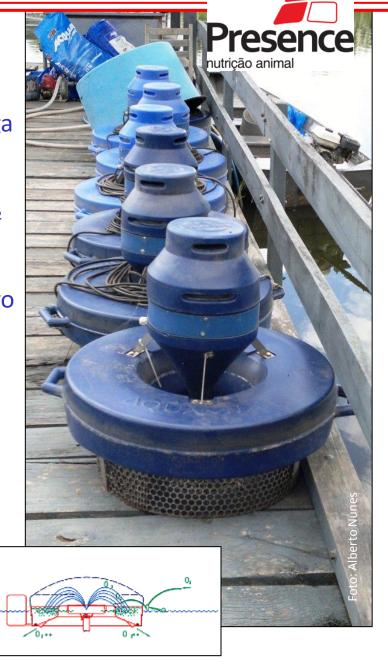


SELEÇÃO DE ANIMAIS

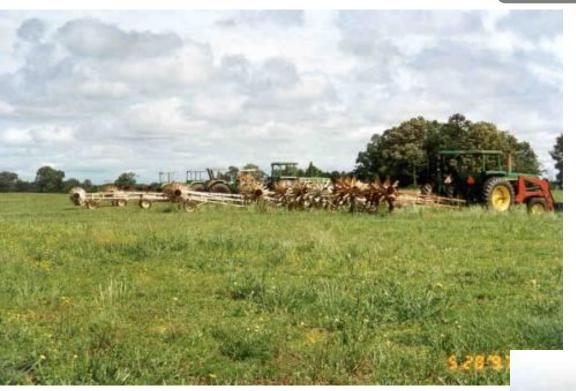
COMO OS PEIXES RESPIRAM



EFICIÊNCIA DE TRANSFERÊNCIA DE OD

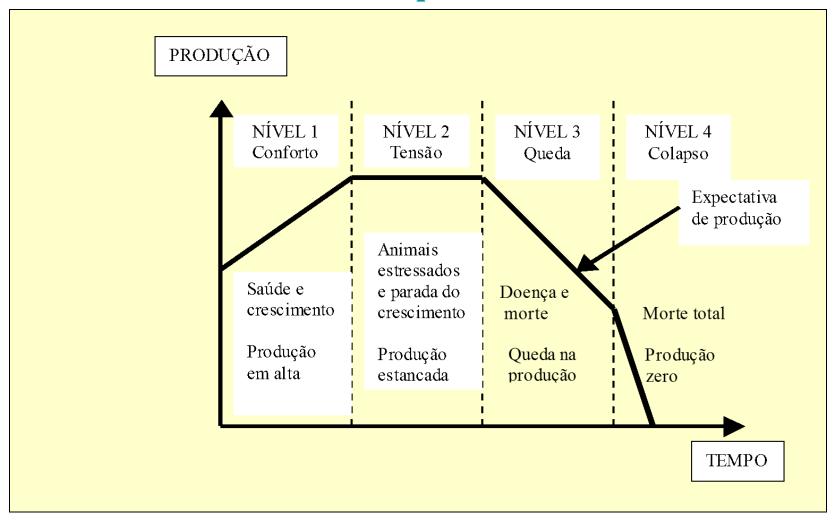


Consiste de um motor submersível com um AERADOR VERTICAL impulsor conectado a seu eixo


- Motor fica suspenso por bóias e o impulsor joga água no ar para afetar a aeração
- Modelos para aquicultura são menores que 1½
 kW ou 1,12 cv (1,34 kW = 1,0 cv)
- Mais adequados para pequenas áreas de cultivo menores que 0,5 há (5.000 m²)
- Altamente eficientes (SAE pode ser > 2,5 kg

Uso de bomba vertical em uma estação de tratamento de esgotos

AERADORES DE EMERGÊNCIA



ESQUEMA PARA AVALIAR AS LEITURAS DO DISCO DE SECCHI

Leitura do disco de Secchi (cm)	Comentários
Menor que 20 cm	Viveiro muito turvo. Se o viveiro está turvo devido ao fitoplâncton, haverá problemas com baixa concentração de oxigênio dissolvido. Quando a turbidez for por partículas de solo em suspensão a produtividade será baixa.
20 – 30 cm	A turbidez está se tornando excessiva.
30 – 45 cm	Se a turbidez for devida ao fitoplâncton, o viveiro está em boas condições.
45 – 60 cm	O fitoplâncton está se tornando escasso
Mais que 60 cm	Água está muito clara. Produtividade inadequada e perigo de problemas com plantas daninhas aquáticas.

Evolução da expectativa de produção de acordo com os diferentes níveis de qualidade ambiental.

Mejorando la seguridad alimentaria en Bolivia

Paulo Sérgio Ceccarelli – CEPTA- paulo.ceccarelli@icmbio.gov.br

Widen Abastoflor- CEPAC (PPVII)- widen@cepac.org.bo Giovani Crespo - CEPAC (PPV II)- gcrespo@cepac.org.bo

Tiffanie Rainville- WFT (PPV II) – tiffanie@worldfish.org

Ejecutado por:

